d E. M. MOROZOV

xplanation of the magnetic field ature. In this case the fulfilment erimentally verified. It may be

(2)

(3)

(6)

the lattice parameter change

condition (2) is fulfilled in the $Mn_2Ge_ySb_{1-y}$ system as evidenced Thus Kittel's theory quite satise on the transition temperature, ion inversion. But it is not clear **i** of the pressure influence on the e solved separately for each inthat with transition the lattice nile in reality any other lattice rification of the theory logically is comparable with the measured

sure, in accordance with Kittel's m:

thermal expansion coefficient of

ons one has to make use of two

ðα (4) ∂C

- M2 . (5)

y to know the entropy change ΔS M, and the lattice parameter o be found from X-ray diffraction be found from magnetic measure-

sitions of the first kind gives the on magnetic field strength [7]:

 $\Delta \sigma$ S

Magnetic Transformations in Mn₂Ge_ySb_{1-y} in Strong Magnetic Fields 855

Tant	е	

Composition	Tran- sition	Т _{ко} (°К)	$\sigma_{\rm s}$ (e.m.u./g)	$\partial H_{\rm k}/\partial T$ (Oe/deg)	ΔS (erg/g deg)	ΔQ (cal/g)			
$Mn_2Ge_{0.12}Sb_{0.88}$	AF-SP AF-FM	$\begin{array}{c} 285\\ 324 \end{array}$	16.4 23.2	$3.57 imes 10^3 \ 3.96 imes 10^3$	$5.84 imes 10^4$ $9.2 imes 10^4$	0.4 0.71			
$\mathrm{Mn_2Ge_{0.16}Sb_{0.84}}$	AF-SP AF-FM	327 372	$\begin{array}{c} 10.8\\ 13.1 \end{array}$	$3.23 imes 10^3 \\ 4.41 imes 10^3$	${3.5 imes 10^4} \over {5.78 imes 10^4}$	$0.27 \\ 0.513$			
Mn.Ge0.20Sb0.80	AF-FM	370	7.1	$4.28 imes 10^{3}$	3.04×10^{4}	0.269			

where T_{k0} is the transition temperature without magnetic field, $\Delta\sigma$ the sublattice magnetization change, ΔS the change of entropy of the spin system at transition.

From the temperature dependence of magnetization, $\sigma(T)$, measured in strong magnetic field, it is possible to define $\Delta \sigma$, and from the experimental dependence $T_k(H_k)$ it is easy to find $(\partial H_k/\partial T_k)$. Then on the basis of (6) it is possible to calculate the entropy change and transition heat. We have performed such calculations for all investigated samples. Table 1 gives the calculated results for three compositions in which all magnetic transformations peculiar to the Mn₂Ge_ySb_{1-y} system are observed. Using the results given in Table 1 and the X-ray diffraction investigations of the $Mn_2Ge_ySb_{1-y}$ system [8], we have for Mn₂Ge_{0.12}Sb_{0.88}

$$rac{M^2}{\Delta C} = 3.8 imes 10^5 \, {
m G}^2 / {
m \AA} \, .$$

Then using $\gamma = 2 \times 10^{12} \text{ cm}^{-1} \text{ g s}^2$ [5] it is possible on the basis of (4) to calculate

 $rac{\partial lpha}{\partial C} = 5.9 imes 10^4 ~{
m erg/G^2} ~{
m A} ~.$

Now on the basis of (5) we can define a thermal expansion coefficient of the lattice, $(\partial C_{\rm T}/\partial T) = 7.7 \times 10^{-4}$ Å/deg, and calculate using (3) the coefficient $(\partial T_k/\partial P)$. For Mn₂Ge_{0.12}Sb_{0.88} we obtain

30

 $\frac{\partial T_k}{\partial P} = 4.25 \text{ deg/katm}$.

T_k-T_{ko} (°K)-10 0 6 10 P(katm)-

Fig. 5. Comparison of experimental and calcu-The 3. Comparison of experimentation characteristic lated dependences of pressure influence on the shift of the transition temperature in $Mn_3Ge_{0.12}Sb_{0.88}$. Curve 1 is an experimental one, curve 2 is the tangent to the experi-mental dependence, and curve 3 is the calcu-lated dependence

